US 20210042613A1

a2y Patent Application Publication o) Pub. No.: US 2021/0042613 A1

a9y United States

OZTIRELI et al.

(43) Pub. Date: Feb. 11, 2021

(54) TECHNIQUES FOR UNDERSTANDING HOW
TRAINED NEURAL NETWORKS OPERATE

(71) Applicants: DISNEY ENTERPRISES, INC.,
Burbank, CA (US); ETH Ziirich,
Zurich (CH)
(72) Inventors: Ahmet OZTIRELI, Zurich (CH);
Markus GROSS, Zurich (CH); Marco
ANCONA, Zurich (CH)
(21) Appl. No.: 16/533,301
(22) Filed: Aug. 6, 2019
Publication Classification
(51) Imt. ClL
GO6N 3/04 (2006.01)
GO6F 17/18 (2006.01)
GO6F 17/15 (2006.01)

(52) US.CL
........... GO6N 3/0472 (2013.01); GOG6F 17/15
(2013.01); GOGF 17/18 (2013.01); GO6N

3/0454 (2013.01)

(57) ABSTRACT

In various embodiments, a relevance application quantifies
how a trained neural network operates. In operation, the
relevance application generates a set of input distributions
based on a set of input points associated with the trained
neural network. Each input distribution is characterized by
a mean and a variance associated with a different neuron
included in the trained neural network. The relevance appli-
cation propagates the set of input distributions through a
probabilistic neural network to generate at least a first output
distribution. The probabilistic neural network is derived
from at least a portion of the trained neural network. Based
on the first output distribution, the relevance application
computes a contribution of a first input point included in the
set of input points to a difference between a first output point
associated with a first output of the trained neural network
and an estimated mean prediction associated with the first
output.

&, 300

Generate the input converier based on the inftigl point transformation in the
trained neural network
302

!

Convert each non-initial point transformation in the trained neural network
into the corresponding distribution transformation
304

|

Generate the probabilistic neural network that includes the distribution
transformations
308

:

Determing coalitions sizes based on the total number of inputs to the
frained neural network and then select the first input point set
308

I

Select first input point in selected input point set

310

}

For each coalition size, compute partial input distribution set and full input
distribution set based on selected input point, selected input point set, and
input conversion
32

|

For each coalition size, compute partial output distribution set and full
cutput distribution set based on the probabilistic neural network, saving
internal distributions as per the internal evaluation list
314

}

For each coslition size, compule marginal contribution vector based on the
partial cutput distribution set and the full output distribution set
318

©

1

= | JHNOIL
m TIT soursuy synduwion
[\ J— SUDHRULIGISURI]
< !
m b1 1o8se00ld Juiod Jo Jsquuny (830} = 1
Yo
S 9T Alowsy 00 (3 = o) = (08
m ——. Ze 1 uonouny
(0 M) (4 == i = (01 05T (NN)HomgaN | mw_wmmnmw siin IO MIOMISN
SE5T 2 [RinaN onsijigeqold - o
2T UoHOUN 4 UCHNGLISIC] MOMIBN NN T2T (NN)
- WICMIBN [BINaN psuialy
— 3 3 A [: 5
=] :
= (951 pue i ¥ Moy | T
= v_‘ - B 18] o' C b o4 ¢ by Bl 1Bl —— . M m |
& ZET (zesor |, | |27 D) (Ge2 o) (070 | (o)) ¥ ﬁmmw : X
- ¥l =0 WTRET| | WTgaT | | O 98T | |BTICEL | | Ley] 40M0 onding (NJZET
m) wmm uonn H,@Mw Lonn uqmww uonn w@w uonn :>CQQ M WO
L (Nzegi ~QLISI(] ~QLISIq ~QUIsi e Nililgl indup |] L B indu
- 104 w induj nding nding indug et H
< NETIOZT **°) |y b= e N leled | | |ened Jiod BV
= auiBug \EN = T T (teet ndinQ :
ane/, SEh - =5 jurod P L TTTeET
= Aeideysg k=Bl | H/uvi - o WM = Mss@w 40f oVl Emu&
= 10j08p SR ~{i=fl0LL 129G od nduy
m w anen BTTe/ 1 opsa uonnguiuoen euiblepy ouibug g | a\
= T Aoideys (Vggt pue (L)zei 104 TI=0T=08T teddeipy NN %ﬁg oeT
£ : OICRUS e 98 10i0d
=
£ 7 ; nduy
S NiTNJZBT [ewe| 4 T1TCET (1-N) = TISET Jees) 0= T1)EGT 221§ UOKENOD
Am 06T xinpep enjep Aoideys FEGT 1817 0215 uolieod fs\mo;mwmw%,q
) aoueADiaM Q0L
£ 7 Waishg
Dn._a 4

Patent Application Publication Feb. 11,2021 Sheet 2 of 4 US 2021/0042613 A1

P i
V1 Input Converter 152 E
§ /1 Compute statistics | |
b1/ of input X without X; | 4
NN Conversion P =x E
wwwwwwwwwwwwwwwww L) § i
: ' § Engine 150 % 20 :
: Point t ! 1 5
t| Transformation | ; internal P H (W) g
; 212(1) g Evaiuftacn List E , 1 - R
} | f{x) = weighted | : 240 = NULL | OF =g WD -7 |
; sum ; | ;
g : i 1/ Compensate for g
! i Parameter Value a % Input Conversion % i coaiz?;an size 156(q) | 1
; Set 214(1) e 3 Engine g /f of csize g
i1 weights=W, 1 250 Pl u=csizex :
|| biases =NULL | N csize | |
§ immemmoommommoosmonoooa : | 07 =osize—o—m0
mmmmmmmmmmmmmmmmm] —
{1 0 : Closed-Form g |
i Bomt : Conversion : 1l Compute delta |
H ' 7 i 3 . 8
i | Transformation | | » 270(1) | //introduced by X; ;
: 212(2) ; affine b= WX :
E §2(x(1) = affine | | transformation g g !
N H “ 8
E fransformation : Closed-Form E R o
; Parame;ter\ialug : Conversion g i Parameter Value Set : |
¢ H ; i — H 3
t b 270(2) by 2141} =W by
po Setzldldl i RelU activation | | | L Izorroiooioriioioi!
1 weights, biases | i
R Closed-Form Probabilistic NN 160
N Conversion t §
; , § 270(3) 2 Distribution ;
; Point _ ; max pooiing i | Transformation !
i | Transformation | g 292(2 ;
g 294)
vomert || bt | iy ||
g it ! Matching Engine S i
A : 280 t | Parameter Value | i
1§ Parameter Value | executed when Pl Set214(2) i
g P Set214ll) B none of the pRommememooooo ool
; | weights, biases | | closed-form || | | 7 g T
Ll conversions 270 P ooy
f g . . . 4
Trained Neural Network are ap;fiicabie : D;strsbuteog g
120 u? = E Trangs;ozms}extzorx E
(P o (P-H)
E’X(Pﬂ[f tS] Pl RO, 2D :
) B Pt ot)
O'x = b pamemmemmmmmmmomm e i
%7 (-1) o i
\g,x(p_ﬂ['fm(xiﬂi)] R Parameter Value | ;
Pl Set214) i
| se=ceczrmcczmosmscszmac=os s i
§ §
FIGURE 2

Patent Application Publication Feb. 11,2021 Sheet 3 of 4 US 2021/0042613 A1

&~ 300

Generate the input converter based on the initial point transformation in the
trained neural network
302

A A

Convert each non-initial point transformation in the trained neural network
into the corresponding distribution transformation
304

k 4

Generate the probabilistic neural network that includes the distribution
transformations
306

A 4

Determine coalitions sizes based on the total number of inputs to the
trained neural network and then select the first input point set
308

¥

Select first input point in selected input point set
310

Y

For each coalition size, compute partial input distribution set and full input
distribution set based on selected input point, selected input point set, and
input conversion
312

2

¥

For each coalition size, compute partial output distribution set and full
output distribution set based on the probabilistic neural network, saving
internal distributions as per the internal evaluation list
314

¥

For each coalition size, compute marginal contribution vector based on the
partial output distribution set and the full output distribution set
316

FIGURE 3A

Patent Application Publication

©

F-5

Feb. 11, 2021 Sheet 4 of 4 US 2021/0042613 A1

Set Shapley value vector corresponding to selected input point equal to the
sum of the marginal contribution vectors

Select next input
point set
328

< input

318

e Select next input
input pomnt?

point
322

point set? >

Yes

Transmits and/or displays the Shapley value vector for each input point in
a2ach input point set for use in understanding the trained neural network

328

FIGURE 3B

US 2021/0042613 Al

TECHNIQUES FOR UNDERSTANDING HOW
TRAINED NEURAL NETWORKS OPERATE

BACKGROUND

Field of the Various Embodiments

[0001] Embodiments relate generally to artificial intelli-
gence and neural networks and, more specifically, to tech-
niques for understanding how trained neural networks oper-
ate.

Description of the Related Art

[0002] A neural network is a collection of interconnected
parameterizable units known as “neurons” that can be
trained to recognize and interpret patterns in data based on
multiple examples of those patterns. Trained neural net-
works are used to solve problems for a wide variety of tasks,
such as image recognition, search engine filtering, playing
board games, character animation, medical diagnosis, pilot-
ing drones, driving automobiles, etc. However, because a
typical neural network includes a large number of param-
eters (hundreds, thousands, or even tens of thousands or
more) that are automatically adjusted during training,
trained neural networks are usually implemented without
any proper understanding of what the trained neural network
actually learned during training. Understanding what a
trained neural network learned during training is important
in many different contexts, such as when mistakes in the
output of the trained neural network can have serious
consequences (e.g., in automated vehicle implementations),
when attempting to improve the accuracy of the trained
neural network (e.g., when debugging errors), when attempt-
ing to implement portions of the trained neural network to
solve a new or different problem, and when pruning neurons
to increase the efficiency of the trained neural network, to
name a few.

[0003] As an example of the importance of understanding
what a trained neural network learned during training,
consider the scenario where a neural network is trained to
classify images as either male or female based on training
data that includes images of female faces shown against a
brown background and images of male faces shown against
a green background. Based on the output of the trained
neural network generated in response to new images similar
to the training data, a developer could erroneously believe
that the trained neural network learned to classify images
based on facial features; however, the trained neural network
actually could have learned to classify images based on the
color of the background instead. If the developer could
understand that the trained neural network actually learned
to classify images based on the color of the background
during training, then the developer could re-train the neural
network based on images of faces shown against a wide
variety of background colors to increase the reliability of the
trained neural network with respect to classifying images
based on facial features.

[0004] In one approach to understanding how a trained
neural network operates, heuristics are used to assign an
attribution value to each input of the trained neural network.
Each attribution value attempts to quantify the contribution
of the input to which the attribution value is assigned to a
particular output of the trained neural network. For example,
if the inputs to a trained neural network were the pixels in

Feb. 11, 2021

an image and an output of the trained neural network was a
probability that the image was an image of a dog, then the
attribution value assigned to each pixel would indicate the
relative importance of the pixel when computing the prob-
ability that the image was an image of a dog. One drawback
of heuristic-based attribution methods is that the imple-
mented heuristics oftentimes are not technically well-
founded and/or are tailored to only a specific type of task and
data. Accordingly, empirical data has shown that heuristic-
based attribution methods can produce inaccurate and/or
misleading results.

[0005] Inanother approach to understanding how a trained
neural network operates, expected average marginal contri-
butions (referred to as “Shapley values”) are computed for
different input values relative to one or more outputs. For
example, to understand why a trained neural network mis-
classified a particular image as female, Shapley values could
be computed for each pixel in the image relative to the
output corresponding to the classification of female. The
accuracy and reliability with which Shapley values quantify
the contribution of each player to the outcomes of coopera-
tive games is well-known and extending Shapley values to
quantify contributions of input values to the outputs of
trained neural networks is technically well-founded. Fur-
thermore, empirical data has shown that Shapley values
provide an accurate and unbiased representation of the
behavior of trained neural networks. One drawback to using
Shapley values to understand trained neural networks,
though, is that the computational resources and time
required to compute Shapley values can be prohibitive. In
that regard, the number of times a trained neural network
needs to be evaluated to compute the Shapley values for a set
of input values is exponentially related to the number of
inputs. Consequently, computing Shapley values for rela-
tively complex neural networks (i.e., having more than a few
dozen inputs) is simply not feasible.

[0006] As the foregoing illustrates, what is needed in the
art are more effective techniques for understanding how
trained neural networks operate.

SUMMARY

[0007] One embodiment sets forth a computer-imple-
mented method for quantifying how a trained neural net-
work operates. The method includes generating a plurality of
input distributions based on a first plurality of input points
associated with the trained neural network, where each input
distribution is characterized by a mean and a variance
associated with a different neuron included in the trained
neural network; propagating the plurality of input distribu-
tions through a probabilistic neural network that is derived
from at least a portion of the trained neural network to
generate one or more output distributions; and based on a
first output distribution included in the one or more output
distributions, computing a contribution of a first input point
included in the first plurality of input points to a difference
between a first output point associated with a first output of
the trained neural network and an estimated mean prediction
associated with the first output.

[0008] At least one technical advantage of the disclosed
techniques relative to the prior art is that the disclosed
techniques can more efficiently and more reliably quantify
how a trained neural network operates across a wide range
of architectures and input types. In particular, contrary to
prior art approaches that use unreliable and/or non-robust

US 2021/0042613 Al

heuristics, the disclosed techniques use statistical approxi-
mation to compute estimated Shapley values that more
accurately quantify the contributions of input points to
output points. Further, estimating Shapley values using the
disclosed techniques is computationally more efficient than
computing exact Shapley values, as is done in prior art
approaches. In this regard, the number of network evalua-
tions required to estimate the Shapley values using the
disclosed techniques is linearly related to the number of
inputs, as opposed to exponentially related, which is the case
in prior art approaches. Accordingly, the disclosed tech-
niques consume less time and computational resources than
prior art approaches and can be used to more accurately and
effectively evaluate and understand how a trained neural
network operates relative to prior art approaches. These
technical advantages provide one or more technological
advancements over the prior art.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] So that the manner in which the above recited
features of the various embodiments can be understood in
detail, a more particular description of the inventive con-
cepts, briefly summarized above, may be had by reference to
various embodiments, some of which are illustrated in the
appended drawings. It is to be noted, however, that the
appended drawings illustrate only typical embodiments of
the inventive concepts and are therefore not to be considered
limiting of scope in any way, and that there are other equally
effective embodiments.

[0010] FIG. 1 is a conceptual illustration of a system
configured to implement one or more aspects of the various
embodiments;

[0011] FIG. 2 is a more detailed illustration of the neural
network conversion engine of FIG. 1, according to various
embodiments;

[0012] FIGS. 3A-3B set forth a flow diagram of method
steps for quantifying what a neural network has learned
during a training phase, according to various embodiments.

DETAILED DESCRIPTION

[0013] In the following description, numerous specific
details are set forth to provide a more thorough understand-
ing of the various embodiments. However, it will be appar-
ent to one skilled in the art that the inventive concepts may
be practiced without one or more of these specific details.

System Overview

[0014] FIG. 1 is a conceptual illustration of a system 100
configured to implement one or more aspects of the various
embodiments. The system 100 includes, without limitation,
a compute instance 110 and a trained neural network 120.
For explanatory purposes, multiple instances of like objects
are denoted with reference numbers identifying the object
and parenthetical numbers identifying the instance where
needed.

[0015] Any number of the components of the system 100
may be distributed across multiple geographic locations or
implemented in one or more cloud computing environments
(i.e., encapsulated shared resources, software, data, etc.) in
any combination. In alternate embodiments, the system 100
may include any number of compute instances 110 and any
number of trained neural networks 120 in any combination.

Feb. 11, 2021

[0016] As shown, the compute instance 110 includes,
without limitation, a processor 112 and a memory 116. The
processor 112 may be any instruction execution system,
apparatus, or device capable of executing instructions. For
example, the processor 112 could comprise a central pro-
cessing unit (“CPU”), a graphics processing unit (“GPU”),
a controller, a micro-controller, a state machine, or any
combination thereof. The memory 116 stores content, such
as software applications and data, for use by the processor
112 of the compute instance 110. In alternate embodiments,
each of any number of compute instances 110 may include
any number of processors 112 and any number of memories
116 in any combination. In particular, any number of the
compute instances 110 (including one) may provide a mul-
tiprocessing environment in any technically feasible fashion.

[0017] The memory 116 may be one or more of a readily
available memory; such as random access memory
(“RAM”), read only memory (“ROM”), floppy disk, hard
disk, or any other form of digital storage; local or remote. In
some embodiments, a storage (not shown) may supplement
or replace the memory 116. The storage may include any
number and type of external memories that are accessible to
the processor 112. For example, and without limitation, the
storage may include a Secure Digital Card, an external Flash
memory, a portable compact disc read-only memory (CD-
ROM), an optical storage device, a magnetic storage device,
or any suitable combination of the foregoing.

[0018] The compute instance 110 is configured to imple-
ment one or more applications or subsystems of applica-
tions. For explanatory purposes only, each application is
depicted as residing in the memory 116 of a single compute
instance 110 and executing on a processor 112 of the single
compute instance 110. However, in alternate embodiments,
the functionality of each application may be distributed
across any number of other applications that reside in the
memories 116 of any number of compute instances 110 and
execute on the processors 112 of any number of compute
instances 110 in any combination. Further, the functionality
of any number of applications or subsystems may be con-
solidated into a single application or subsystem.

[0019] In particular, the compute instance 110 is config-
ured to provide insight into what the trained neural network
120 learned during training. The trained neural network 120
may be a trained version of any type of neural network or a
combination of any number and types of different trained
neural networks. For instance, in various embodiments, the
trained neural network 120 may be a trained convolutional
neural network, a trained recurrent neural network, a trained
multilayer perceptron, or any other type of trained neural
network.

[0020] As depicted via dotted lines, the trained neural
network 120 has N inputs and M outputs, where N and M are
positive integers. In operation, when an input point set 130
(denoted herein as x) is inputted to the trained neural
network 120, the trained neural network 120 applies a
network point function 122 to the input point set 130 to
generate an output point set 140. As shown, the input point
set 130 includes, without limitation, input points 132(1)-132
(N), and the output point set 140 includes, without limita-
tion, output points 142(1)-142(M). The inputs to the trained
neural network 120 and the input points 132 are also
commonly referred to as, respectively, “features” and “fea-
ture values.”

US 2021/0042613 Al

[0021] Each ofthe input points 132 and each of the outputs
points 142 is a value associated with any type of variable
without any representation of an associated uncertainty. For
instance, in some embodiments, the input point set 130 is an
image, each of the input points 132 is an integer that
specifies an intensity for a different pixel in the image, and
each of the output points 142 is an estimated probability that
the image is associated with a different class (e.g., dog, cat,
person, etc.). In other embodiments, the input point set 130
is a multidimensional word vector, each of the input points
132 is a different component of the multidimensional word
vector, and each of the output points 142 is a different
predicted quantity associated with the word vector.

[0022] The trained neural network 120 includes, without
limitation, any number of neurons that are arranged into a
series of layers. The first layer of neurons is also referred to
herein as the input layer, the last layer of neurons is also
referred to herein as the output layer, and the remaining
layers are also referred to herein as hidden layers. The input
layer includes N neurons that each receives a different one
of the input points 132 that is subsequently inputted into one
or more of the neurons in the first hidden layer based on the
connectivity of the trained neural network 120. Based on the
“internal point(s)” received from the preceding layer, each
neuron in a hidden layer computes new internal points and
inputs the new internal points to one or more of the neurons
in the subsequent layer. The output layer includes M neurons
that generate output points 142 based on the internal point(s)
received from the preceding layer.

[0023] In general, each of the neurons in a non-input layer
of the trained neural network 120 combines the inputted
internal points based on learned parameter values (i.e.,
weights and biases) to generate an internal point a. Each of
the neurons in a hidden layer can be configured to output the
internal point a to the next layer or apply a non-linear
activation function to the internal point a to generate an
internal point b and then output the internal point b to the
next layer. Each of the neurons in the output layer can be
configured to output the internal point a as the associated
output point 142 or apply a non-linear activation function to
the internal point a to generate an internal point b and then
output the internal point b as the associated output point 142.

[0024] Each of'the internal point combinations and each of
the non-linear activation functions executed in the layers of
the trained neural network 120 is referred to herein as a
“point transformation,” Accordingly, each non-input layer in
the trained neural network 120 executes one or two point
transformations. Further, the network point function 122 that
describes how the trained neural network 120 generates the
output points 142 based on the input points 132 may be
expressed as the following equation (1):

S5 Do . of D)) M

[0025] In equation (1), f(x) is the network point function
122 implemented by the trained neural network 120, and the
hollow circle denotes function composition. The sequence
of three filled-in dots indicates that there are a total of L
point transformations included in the trained neural network
120. For explanatory purposes only, a post-fixed, parentheti-
cal superscript is used to identify the order in which the point
transformation occurs within the trained neural network 120.
Accordingly, f*) denotes the first point transformation
executed by the neurons in the first hidden layer, and %
denotes the last point transformation executed by the neu-

Feb. 11, 2021

rons in the output layer. In general, for each integer p from
1 to L, f# is the p” point transformation included in the
trained neural network 120.

[0026] As discussed above, trained neural networks are
usually implemented without understanding what the trained
neural network actually learned during training. Implement-
ing a trained neural network without properly understanding
the trained neural network can reduce the reliability of the
trained neural network, hinder efforts to improve the trained
neural network, and reduce opportunities to re-purpose
portions of the trained neural network to new or different
problems.

Estimating Shapley Values for Trained Neural
Networks

[0027] To address the above problems, the compute
instance 110 implements a relevance application 140 that
automatically estimates Shapley values for the trained neural
network 120. The relevance application 140 resides in the
memory 116 and executes on the processor 112. As shown,
the relevance application 140 computes a Shapley value
matrix 190 based on the trained neural network 120 and the
input point set 130. The Shapley value matrix 190 includes,
without limitation, Shapley value vectors 192(1) to 192(N),
where the Shapley value vector 192(i) is associated with the
input point 132(7) and is denoted herein as The Shapley
value vector 192() includes, without limitation, M estimated
Shapley values (not shown), where the estimated Shapley
value (denoted herein as r,) accurately quantifies a contri-
bution of the input point 132(7) to the output point 142(j).
[0028] As persons skilled in the art will recognize, the
Shapley value r, ; specifies the average marginal contribution
of the input point 132(7) to the output point 142(j) across all
possible coalitions of the (N-1) other input points 132
included in the input point set 130. Each coalition is a
different subset of the other input points 132 included in the
input point set 130 and is associated with a coalition size 156
of q (an integer between 0 and (N-1)) that specifies the total
number of the input points 132 that are included in the
coalition. Note that the input points 132 that are not included
in the coalition are considered to be replaced with an
associated baseline point (e.g., zero).

[0029] As persons skilled in the art will recognize, com-
puting the Shapley value r,; exactly requires 2% unique
network evaluations of the trained neural network 120. As
referred to herein, a “network evaluation” of a neural
network is the propagation of a set of value(s) for the
input(s) of the neural network through the layers of the
neural network to compute the value(s) of the output(s) of
the neural network.

[0030] Instead of computing exact Shapley values, the
relevance application 140 implements a probabilistic frame-
work to compute estimated Shapley values. The relevance
application 140 computes estimated Shapley values associ-
ated with the input point 132() based on expected marginal
contributions of the input point 132(;) with respect to
different distributions of subsets of the coalitions that have
different coalition sizes 156. As shown, the relevance appli-
cation 140 includes, without limitation, a neural network
conversion engine 150, an input converter 152, a probabi-
listic neural network 160, a coalition size list 154, and N
instances of a Shapley value engine 170. In alternate
embodiments, the relevance application 140 may include
any number of instances of the Shapley value engine 170.

US 2021/0042613 Al

[0031] The relevance application 140 initially operates in
a framework generation mode and subsequently operates in
an evaluation mode. In the framework generation mode, the
neural network conversion engine 150 generates the input
converter 152 and the probabilistic neural network 160
based on the trained neural network 120. To generate the
input converter 152, the neural network conversion engine
150 generates a probabilistic version of the point transfor-
mation £, As described previously herein, f;;y denotes the
first point transformation executed by the neurons in the first
hidden layer included the trained neural network 120. In
general, the probabilistic version of a point transformation
f® is referred to herein as a distribution transformation and
is denoted as I Further, the distribution transformation
corresponding to the point transformation £ is referred to
herein as an “initial distribution transformation.”

[0032] The initial distribution transformation converts the
input point set 130 (denoted herein as x) to a partial input
distribution set 182(i,q) based on the input point 132(i), and
the coalition size 156(g). The partial input distribution set
182(j, ¢) is denoted as (1, , O, , 2} and specifies a different
distribution for each of the outputs of), where each
distribution is represented as a mean and variance of an
isotropic Gaussian. A combination of a mean and a variance
representing a distribution is also referred to herein as a
“statistical set.” The j* distribution (g O a Jz) specified in
the partial input distribution set 182(7, ¢) 1s an estimated
distribution of the values of the j** internal point generated
by £ over the subset of coalitions of the input point set 130
formed without the input point 132(7) that have the coalition
size 156(g).

[0033] The neural network conversion engine 150 config-
ures the input converter 152 to execute the initial distribu-
tion transformation to generate the partial input distribution
set 182(i, ¢) and then modify the partial input distribution set
182(i, ¢) based on the target input point 132(/) and f to
generate a full input distribution set 184(i, ¢). The full 1nput
distribution set 184(i, ¢) is denoted herein as (u, ,, 0, , ?yand
specifies a different distribution for each of the outputs of
f" where each distribution is represented as a mean and
variance of an isotropic Gaussian. The j™ distribution (g, ay
(S) specified in the full input distribution set 182(i, q) 1s
an estimated distribution of the values of the j* internal point
generated by f*’ over the subset of coalitions of the input
point set 130 formed without the input point 132(;) that have
the coalition size 156(¢) and are adjusted to specify the input
point 132(;). Note that in some embodiments, the j variance
included in the full input distribution set 184(i, ¢) is equal to
the j* variance included in the partial input distribution set
182(i,).
[0034] If the total number of point transformations (L)
included in the trained neural network 120 is equal to 1, then
the neural network conversion engine 150 sets the probabi-
listic neural network 160 equal to NULL. Otherwise, to
generate the probabilistic neural network 160, the neural
network conversion engine 150 generates a probabilistic
version of each of the point transformations f#-f*. More
precisely, for the point transformations f®-f&, the neural
network conversion engine 150 generates, respectively, the
distribution transformations - The neural network con-
version engine 150 then generates the probabilistic neural
network 160 that propagates an input distribution set
through the distribution transformations -1 to generate
an output distribution set. The input distribution set is either

Feb. 11, 2021

the full input distribution set 184 or the partial input distri-
bution set 182. The probabilistic neural network 160 imple-
ments a network distribution function 162 that may be
expressed as the following equation (2):

Ao)=(Po . .. of) (o))

[0035] If the non-initial point transformation % trans-
forms a total of a points into a total of b points, then the
corresponding non-initial distribution transformation f®
transforms a total of a distributions into a total of b distri-
butions. If the input distribution set to the probabilistic
neural network 160 is the partial input distribution set 182(7,
q), then the output distribution set is a partial output disg)‘i-
bution set 186(i, ¢) that is denoted herein as (p.l.,q(L),Gi,q2).
If the input distribution set is the full input distribution set
184(i, ¢), then the output distribution set is a full output
dlStI‘%buthIl set 188(i, ¢) that is denoted herein as (u, q(L),
) The j* distribution set 1ncluded in the partial output
dlstnbutlon set 186(i, ¢) and the i distribution set included
in the full output distribution sets 188(i, ¢) correspond to the
output point 142(j).
[0036] The neural network conversion engine 150 may
generate the input converter 152 and the probabilistic neural
network 160 in any technically feasible fashion. An example
of the neural network conversion engine 150 is described in
greater detail in conjunction with FIG. 2. In alternate
embodiments, the input converter 152 may generate input
distributions that are represented in any technically feasible
fashion and the probabilistic neural network 150 may propa-
gate distributions that are represented in any technically
feasible fashion. In the same or other alternate embodiments,
instead of the internal converter 152 and the probabilistic
neural network 160, the neural network conversion engine
150 may generate any type of probabilistic framework that
is consistent with any type of trained neural network 120 in
any technically feasible fashion.
[0037] In the evaluation mode, the relevance application
150 configures the Shapley value engine 170 to compute the
Shapley value vectors 192 using the input converter 152 and
the probabilistic neural network 160. First, the relevance
application 160 generates the coalition size list 154 that
specifies the coalition sizes 156 that the Shapley value
engine 170 uses to compute the Shapley value vectors 192.
The relevance application 140 may generate the coalition
size list 154 in any technically feasible fashion.
[0038] For instance, in some embodiments, the relevance
application 140 includes all of the N possible coalition sizes
156 in the coalition size list 154. Accordingly, the relevance
application 140 sets K equal to N and the coalition sizes
156(1)-156(N) equal to, respectively 0-(N-1). Importantly,
empirical results have shown that the accuracy of the
Shapley value vectors 192 do not change significantly when
selecting a relatively small value of K (e.g., 10) instead of
N. To improve efficiency, in some embodiments, the rel-
evance application 140 sets K equal to an integer less than
N, the coalition size 156(1) equal to 0, the coalition size
156(K) equal to (N-1), and the coalitions sizes 156(2)-156
(N-1) equal to roughly evenly-spaced integers between 0
and (N-1).
[0039] For each of the input points 132(7) included in the
input point set 130, the relevance application 140 configures
the Shapley value engine 170(i) to compute the Shapley
value vector 192(7) based on the input point set 130, the
input point 132(i), the coalition size list 154, the input

US 2021/0042613 Al

converter 152, and the probabilistic neural network 160. As
shown, the Shapley value engine 170(i) includes, without
limitation, neural network wrappers 180(i,1)-180(i, K) and
the Shapley value vector 192(i).

[0040] The neural network wrapper 180(i,q) computes a
marginal contribution vector 172(i, ¢), denoted as m, ,. The
marginal contribution vector 172(i, ¢) estimates the marginal
contributions of the input point 132(7) to each of the output
points 142 over the subset of coalitions of the input point set
130 formed without the input point 132(i) that have the
coalition size 156(g). In operation, the neural network
wrapper 180(i,q) inputs the trained neural network 120, the
input point set 130 x, the input point 132(i) and the target
coalition size 156(g) to the input converter 152. In response,
the neural network wrapper 180(i,q) receives the partial
input distribution set 182(i, ¢) and the full input distribution
set 184(i, q).

[0041] If the total number of point transformations (L)
included in the trained neural network 120 is equal to 1, then
the probabilistic neural network 160 is NULL, and the
neural network wrapper 180(i,q) sets the partial output
distribution set 186(i, ¢) equal to the partial input distribu-
tion set 182(i, ¢). Similarly, the neural network wrapper
180(i,q) sets the full output distribution set 188(i, ¢) equal to
the full input distribution set 184(i, ¢).

[0042] Otherwise, the neural network wrapper 180(i,q)
inputs the partial input distribution set 182(i, ¢) to the
probabilistic neural network 160 and, in response, receives
the partial output distribution set 186(i, ¢). The neural
network wrapper 180(i,¢) also inputs the full input distri-
bution set 184(i, ¢) to the probabilistic neural network 160
and, in response, receives the full output distribution set
188(i, ¢).

[0043] Subsequently, the neural network wrapper 180(i,q)
performs an element-wise subtraction between the “partial”
means p.l.,q(L) specified in the partial output distribution set
186(i, ¢) and the “full” means q(L) specified in the full
output distribution set 186(i, ¢) to generate a delta mean
vector (ﬁi,q@)-pi,q@)). The neural network wrapper 180(i,¢9)
sets the marginal contribution vector 172(i, ¢) equal to the
delta mean vector divided by the size K of the coalition size
list 156. The marginal contribution vector 172 may be
denoted as m, , and expressed as the following equation (3):

1 3
Mg = E(FE,L; -

[0044] Importantly, the marginal contribution vector 172
(i, ¢) estimates the marginal contributions of the input point
132(i) to the output points 142 across the subsets of the
coalitions of the input point set 130 formed without the input
point 132(7) that have the coalition size 156(g). The Shapley
value engine 170(i) then sets the Shapley value vector 192(i)
equal to the sum of the marginal contribution vectors 172
(1,1)-172(i,K). In general, the Shapley value vector 192(7),
denoted as r,, may be expressed as the following equation

(4):

=K 4

Feb. 11, 2021

[0045] The relevance application 140 stores the N Shapley
value vectors 192(1)-192(N) as the Shapley value matrix
190. The relevance application 140 then displays and/or
transmits any portion of the Shapley value matrix 190 to any
number of software applications in any technically feasible
fashion to provide insight into what the trained neural
network 120 has learned. In alternate embodiments, the
relevance application 140 may execute the evaluation phase
for any number of input value sets 130 sequentially, con-
currently, or any combination thereof.

[0046] Advantageously, the number of network evalua-
tions that the relevance application 140 performs to compute
the (NxM) Shapley values included in the Shapley value
matrix 190 is (2xNxK). Because the largest possible value
for K is N, the number of network evaluations that the
relevance application 140 performs to compute the Shapley
value matrix 190 is no greater than 2xNZ2. Consequently,
unlike prior art approaches that compute exact Shapley
values to quantify what trained neural networks have
learned, the relevance application 140 can efficiently com-
pute Shapley values for complex trained neural networks
having any number of inputs.

[0047] The descriptions of the various embodiments have
been presented for purposes of illustration, but are not
intended to be exhaustive or limited to the embodiments
disclosed. Many modifications and variations will be appar-
ent to those of ordinary skill in the art without departing
from the scope and spirit of the described embodiments. As
a general matter, the techniques disclosed herein are appli-
cable to computing any number of Shapley values associated
with any portion of a trained neural network 120 based on
generating and propagating distributions through a proba-
bilistic version of a least a portion of the trained neural
network 120.

[0048] For instance, in some embodiments, the relevance
application 140 may be configured to compute Shapley
values for any number of the internal points in the trained
neural network 120 in any technically feasible fashion. For
example, the relevance application 140 could configure the
probabilistic neural network 160 to store and append internal
distributions to the output distribution set. The neural net-
work wrapper 170 could compute and append internal
marginal contributions to the marginal contribution vector
172, and the Shapley value engine 170 could compute and
append internal Shapley values to the Shapley value vector
192.

[0049] Advantageously, relative to the prior art, the esti-
mated Shapley values included in the Shapley value matrix
190 can more efficiently and more reliable quantify the
behavior of the trained neural network 120 across a wide
range of architectures and input types Accordingly, the
relevance application 140 can be used to increase confidence
in the trained neural network 120, improve the accuracy of
the trained neural network 120, implement portions of the
trained neural network 120 to solve a new or different
problem, prune neurons to increase the efficiency of the
trained neural network 120, etc.

[0050] For example, to understand why the trained neural
network 120 misclassified a particular image as female, a
user could configure the relevance application 140 to com-
pute the Shapley value matrix 190 for the input point set 130
representing the image. The relevance application 140 could
then display the Shapley value vector 192 corresponding to
the output point 142 specifying the probability of female as

US 2021/0042613 Al

a “Shapley image.” The relevance application 140 could set
the color of each pixel in the Shapley image based on the
Shapley value of the associated input point 132. Accord-
ingly, the coloring of the Shapley image would visually
illustrate the contribution of each of the inputs points 132
with respect to the misclassification. The user could subse-
quently enhance the training dataset based on the insights
provided by the Shapley image and retrain the trained neural
network 120 to improve the accuracy.

[0051] In another example, as part of an effort to generate
a more efficient, smaller trained neural network 120, a user
could configure the relevance application 140 to compute
the Shapley value matrix 190 that included all the internal
Shapley values for each of a wide variety of input point sets
130. Based on the Shapley value matrices, the user could
determine which of the neurons are contributing least to the
output value sets 140 and, therefore, would be good candi-
dates for pruning.

[0052] As persons skilled in the art will recognize, in
various embodiments, the probabilistic neural network 160
may be optimized to perform any number of network
evaluations in parallel, Consequently, in various embodi-
ments, any number of the (2xNxK) network evaluations
initiated by the neural network wrappers 180 may occur
sequentially, concurrently, or any combination thereof. In
the same or other embodiments, the relevance application
140 may process any number of input value sets 130
concurrently and the number of network evaluations that
occur concurrently may exceed (2xNxK).

[0053] It will be appreciated that the system shown herein
is illustrative and that variations and modifications are
possible. The connection topology, including the number,
location, and arrangement of input point sets 130, trained
neural networks 120, and compute instances 110 may be
modified as desired. In certain embodiments, one or more
components shown in FIG. 1 may not be present.

[0054] Note that the techniques described herein are illus-
trative rather than restrictive, and may be altered without
departing from the broader spirit and scope of the embodi-
ments. In particular, the relevance engine 140, the neural
network conversion engine 150, the input converter 152, the
probabilistic neural network 160, the Shapley value engine
170, the neural network wrapper 180 may be implemented
across any number of software applications in any combi-
nation. Further, in various embodiments, any number of the
techniques disclosed herein may be implemented while
other techniques may be omitted in any technically feasible
fashion.

[0055] For instance, in some alternate embodiments, the
relevance engine 140 may be configured to compute Shapley
values for a single target output of the trained neural network
120. In such embodiments, the neural network conversion
engine 150 may generate the input converter 152 and the
probabilistic neural network 160 based on a target output
point function that is implemented in the trained neural
network 120 instead of the network point function 122. The
partial input distribution set 182 and the full input distribu-
tion set 184 may be modified accordingly. The partial output
distribution set 186, the full output distribution set 188, the
marginal contribution vector 172, and the Shapley value
vector 192 may be replaced with, respectively, a partial
output distribution, a full output distribution, a marginal
contribution, and a Shapley value. Finally, the Shapley value
matrix 190 may be replaced with a list of N Shapley values,

Feb. 11, 2021

where each Shapley value corresponds to a different input
point 132 and is generated by a different Shapley value
engine 170.

Modifying Trained Neural Networks to Propagate
Distributions

[0056] FIG. 2 is a more detailed illustration of the neural
network conversion engine 150 of FIG. 1, according to
various embodiments. As shown, the neural network con-
version engine 150 includes, without limitation, an input
converter engine 250, any number of closed-form conver-
sions 270, a moment mapping engine 280, and an internal
evaluation list 240. For explanatory purposes only, FIG. 2
describes the operation of the neural network conversion
engine 150 when generating the input converter 152 and the
probabilistic neural network 160 corresponding to an exem-
plary trained neural network 120. In alternate embodiments,
the operations performed by the neural network conversion
engine 150 may vary based on the trained neural network
120.

[0057] As shown, the neural network conversion engine
150 generates the input converter 152 and the probabilistic
neural network 160 based on the trained neural network 120.
The trained neural network 120 includes, without limitation,
point transformations 212(1)-212(L.), where L is any posi-
tive integer. If the point transformation 212(p) is parameter-
izable, then the trained neural network also includes a
parameter value set 214(p) that specifies the values of the
associated learned parameters (e.g., weights and/or biases).
As shown, the point transformation 212(p) is denoted as &
and generates the point set x? based on point set x%¥-1,

[0058] As described previously herein, to generate the
input converter 152, the neural network conversion engine
150 generates a distribution transformation 292(1), denoted
as T, that is a probabilistic version of the point transfor-
mation 212(1) f. While the point transformation 212(1)
converts the input point set 130 x to an internal point set, the
distribution transformation 292(1) converts the input point
set 130 x to the partial input distribution set 182(i, ¢) based
on the input point 132(#), and the coalition size 156(g). For
explanatory purposes only, the point transformation 212(1)
is a weighted sum of the input value set 130 that can be
expressed as the following equation (5):

SR ®

[0059] In equation (5), W denotes a weight matrix speci-
fied in the parameter value set 214(1). The probabilistic
version of equation (5) for the input point 132(;) and csize
equal to the coalition size 156(g) can be expressed as the
following equations (6a)-(61):

X=X (6a)
% =0 (6b)
B 1 . (6¢)
u= H(Wx)
2 1 222y _ 2 (6d)
=y _1(W X)-p
u=csizeXy (6e)

US 2021/0042613 Al

-continued
N —csize (6f)
N-1 o’

? =cs ize

[0060] The equations 6(a)-6(d), compute input statistics
for the input point set 130 excluding the input point 132(i).
The equations (6e)-(6f) modify the input statistics to corre-
spond to a distribution of coalitions having the coalition size
156(g) of csize and specify, respectively, the means and
variances included in the partial input distribution set 182(j,
¢). The partial input distribution set 182(i, ¢) specifies the
distributions of internal points generated by the point trans-
formation 212(1) for coalitions of the coalition size 156 of
q that are formed from the input point set 130 without the
input point 132(i).

[0061] The neural network conversion engine 150 also
determines equations that express the full input distribution
set 184(i, ¢) based on the partial input distribution set 182(;,
¢) and the point transformation 212(1). The full input
distribution set 184(i, ¢) specifies the distribution of internal
points generated by the point transformation 212(1) for the
subset of coalitions formed without the input point 132()
that have the coalition size 156(qg) and are adjusted to specify
the input point 132(7). Because the point transformation
212(1) is linear, the variances do not interact with the means
and, consequently, the variances specified in the full input
distribution set 184 are equal to the variances specified in the
partial distribution set 182. The full input distribution set
184 can be expressed as the following equations (7a) and
(7b):

P+ (72)
- (7b)
[0062] In equation (7a), W is the weight matrix of size [J,

N] specified in the parameter value set 214(1), which is
left-multiplied by a vector of the input point 132(x) having
size [N, 1] to produce a vector of size [J, 1], J is the number
of internal points generated by £ and, consequently, the
number of input distributions included in each of the partial
input distribution sets 182 and each of the full input distri-
bution sets 184.

[0063] The neural network conversion engine 150 may
generate the input converter 152 that implements the equa-
tions (6a)-(6f) and (7a)-(7b) in any technically feasible
fashion. For instance, in some embodiments, the neural
network conversion engine 150 generates the source code
that, for explanatory purposes only, is depicted within the
input converter 152. The neural network conversion engine
150 then configures a compiler (not shown) to generate the
input converter 152 that is the executable version of the
source code.

[0064] Subsequently, as shown, the neural network con-
version engine 150 converts the point transformations 212
(2)-212(L) included in the trained neural network 120 to the
distribution transformations 292(2)-292(L) that are included
in the probabilistic neural network 160. To convert the point
transformation 292(p) to the distribution transformation
292(p), the neural network conversion engine 150 matches
the first-order central moments (i.e., the means) and the
second-order central moments (i.e., the variances). In gen-
eral, matching the first-order central moments and the sec-
ond-order central moments can be expressed as the follow-
ing equations (8a) and (8b):

Feb. 11, 2021

1O =Expo[f2 (V)] (8a)
0. 27=V o[L)] (8b)
[0065] In equations (8a) and (8b), I [-] denotes expecta-

tion and V[-] denotes variance. As persons skilled in the art
will recognize, moment matching as per equations (8a) and
(8b) can be derived in closed-form for some common point
transformations 212. Accordingly, the neural network con-
version engine 150 includes the three closed-form conver-
sions 270(1)-270(3), where each closed-form conversion
270 is associated with a different type of common point
transformation 212. In alternate embodiments, the neural
network conversion engine 150 may include any number of
closed-form conversions 270.

[0066] The closed-form conversion 270(1) is applicable to
affine functions that are implemented by fully-connected
layers. More precisely, the closed-form conversion 270(1) is
applicable to any point transformation 212(p) that can be
specified by the following equation (9):

SO (2)=Wz+b ()]

[0067] In equation (9), W and b denote, respectively, the
weights and the biases specified in the parameter value set
214(p). The probabilistic version of equation (9) can be
expressed based on the closed-form conversion 270(1) that
includes the following equations (10a) and (10b):

Wiy =W pib (10a)
0%, =W2o? (10b)
[0068] In equations (10a) and (10b), W and b denote,

respectively, the weights and the biases specified in the
parameter value set 214(p), and W? denotes the element-
wise square of W. For explanatory purposes only, the ele-
ment-wise square of a matrix or a vector is denoted herein
with a post-pended, non-parenthetical superscript of 2. Nota-
bly, as persons skilled in the art will recognize, equations
(10a) and (10b) can be modified to apply to other linear
functions, such as convolutions and mean pooling.

[0069] The closed-form conversion 270(2) is applicable to
rectified linear unit (“RelLU”) activations. A RelLU activa-
tion can be expressed as the following equation (11):

Frep,~Max(0,%) an

[0070] The probabilistic version of a RelLU activation is a
rectified Gaussian distribution with mean and variance that
can be expressed based on the closed-form conversion
270(2) that includes the following equations (12a) and
(12b):

uresz(u/\/?)ﬂ/?(p(p/\/?) (12a)
Ot~ 12+ 0V 1V PV o), .2 (12b)

[0071] The symbols ¢ and ¢ denote, respectively, the
cumulative distribution function and the probability density
function of the standard normal distribution.

[0072] The closed-form conversion 270(3) is applicable to
max pooling—in which the point transformation 212(i)
returns the maximum response of g points. The probabilistic
version of max pooling for two distributions (u,, 0*,) and
(uz, O°5) can be expressed based on the closed-form con-
version 270(3) that includes the following equations (13a)-
(13¢):

T T (YRR (TPRTI R YRR (139)

US 2021/0042613 Al

O (L H15)
0,42"'032'(!9((1)"'(}142"'042)'q’(a)"'(llgz"'ogz)'(1‘4’((1))_117"4;(21313)

a=(lL—pp)/ o +0,” (130)

[0073] Inoperation, the neural network conversion engine
150 applies the closed-form conversion 170(3) recursively
to determine the probabilistic version of max pooling for
more than two points.

[0074] To convert the point transformation 212(p) to the
distribution transformation 292(p), the neural network
engine 150 determines whether one of the closed-form
conversions 270 is applicable to the point transformation
212(p). If the neural network conversion engine 150 deter-
mines that one of the closed-form conversions 270 is appli-
cable to the point transformation 212(p), then the neural
network conversion engine 150 generates the distribution
transformation 292(p) based on the point transformation
212(p) and the applicable closed-form conversion 270.
[0075] If, however, the neural network conversion engine
150 determines that none of the closed-form conversions
270 are applicable to the point transformation 212(p), then
the moment matching engine 280 applies equations (8a) and
(8b) to the point transformation 212(p) to determine the
distribution transformation 292(p). The moment matching
engine 280 may apply the equations (8a) and (8b) in any
technically feasible fashion.

[0076] If the point transformation 212(p) is associated
with the parameter value set 214(p), then the distribution
transformation 292(p) is also associated with the parameter
value set 214(p) and the neural network conversion engine
150 adds the parameter value set 214(p) to the probabilistic
neural network 160. Furthermore, the neural network con-
version engine 150 replicates the architecture of the portion
of the trained neural network 120 that implements the point
transformations 212(2)-212(L.) when generating the proba-
bilistic neural network 160. More precisely, the neural
network conversion engine 150 replicates the arrangement
(e.g., layers) and interconnections of the neurons that
execute the point transformations 212(2)-212(L.) when gen-
erating and arranging the neurons that execute the distribu-
tion transformations 292(2)-292(L).

[0077] Invarious embodiments, the internal evaluation list
240 specifies one or more of the point transformations 212.
For each of the point transformations 212 included in the
internal evaluation list 240, the neural network conversion
engine 150 configures the corresponding distribution func-
tion 292 to output the internal distributions. In a comple-
mentary fashion, the neural network wrapper 180, the Shap-
ley value engine 170, and the relevance application 140 are
configured to, respectively, compute the marginal contribu-
tions of the internal distributions, compute the Shapley
values of the internal distributions based on the marginal
contributions, and add the Shapley values associated with
the internal distributions to the Shapley value matrix 190.
[0078] The neural network conversion engine 150 may
acquire the internal evaluation list 240 in any technically
feasible fashion. For instance, in some embodiments, the
relevance engine 140 determines the internal evaluation list
240 based on user input received via a graphical user
interface (“GUI”) and then transmits the internal evaluation
list 240 to the neural network conversion engine 150. In
alternate embodiments, the relevance application 140, the
neural network conversion engine 150, the Shapley value
engine 170, and the neural network wrapper 180 may be

Feb. 11, 2021

configured to compute and store Shapley values for any
number of internal points associated with the trained neural
network in any technically feasible fashion.

[0079] FIGS. 3A-3B set forth a flow diagram of method
steps for quantifying what a neural network has learned
during a training phase, according to various embodiments.
Although the method steps are described with reference to
the systems of FIGS. 1 and 2, persons skilled in the art will
understand that any system configured to implement the
method steps, in any order, falls within the scope of the
embodiments.

[0080] As shown, a method 300 begins at step 302, where
the neural network conversion engine 150 generates the
input converter 152 based on the initial point transformation
212(1) included in the trained neural network 120. At step
304, the neural network conversion engine 150 converts
each of the non-initial point transformations 212(2)-212(N)
in the trained neural network 120 to the corresponding
distribution transformation 292(2)-292(L). At step 306, the
neural network conversion engine 150 generates the proba-
bilistic neural network 160 that includes the distribution
transformation 292(2)-292(L) and implements the network
distribution function 162. At step 308, the relevance appli-
cation 140 determines the coalition sizes 156 included in the
coalition list 154 based on the total number of inputs to the
trained neural network 120 and then selects the first input
point set 130.

[0081] At step 310, the relevance application 140 selects
the input point 132(1) included in the selected input point set
130. At step 312, for each of the coalition sizes 156(g), the
neural network wrapper 180 computes the associated partial
input distribution set 182(7,¢) and the associated full input
distribution set 184 based on the selected input point 132(i),
the selected input point set 130, and the input converter 152.
At step 314, for each of the coalition sizes 156(g), the neural
network wrapper 180 computes the partial output distribu-
tion set 186(i,¢) and the full output distribution set 188(i,q)
based on the probabilistic neural network 160 and, respec-
tively, the partial input distribution set 182(i,¢) and the full
input distribution set 184(7,q). In some embodiments, as part
of step 314, the neural network wrapper 180 or the proba-
bilistic neural network 160 may store internal distributions
as per the internal evaluation list 240.

[0082] At step 316, for each of the coalition sizes 156(g),
the neural network wrapper 180 computes the associated
marginal contribution vector 172(i,q) based on the partial
output distribution set 186(i,¢) and the full output distribu-
tion set 188(7,q). At step 318 (following path A in FIGS.
3A-3B), the Shapley value engine 170 sets the Shapley value
vector 192(i) associated with the selected input point set
130(7) equal to the sum of the marginal contribution vectors
172(5,1))-172(;,K).

[0083] At step 320, the relevance application 140 deter-
mines whether the selected input point 132 is the last input
point 132(N) included in the selected input point set 130. If,
at step 320, the relevance application 140 determines that the
selected input point 132 is not the last input point 132(N)
included in the selected input point set 130, then the method
300 proceeds to step 322. At step 322, the relevance appli-
cation 140 selects the next input point 132 included in the
selected input point set 130. The method 300 then returns to
step 312 (path B in FIGS. 3A-3B), where the relevance

US 2021/0042613 Al

application 140 computes new partial input distribution sets
182 and new full input distribution sets 184 for the newly
selected input point 132(7).

[0084] If, however, at step 320, the relevance application
140 determines that the selected input point 132 is the last
input point 132(N) included in the selected input point set
130, then the method 300 proceeds directly to step 324. At
step 324, the relevance application 140 determines whether
the selected input point set 130 is the last input point set 130.
If, at step 324, the relevance application 140 determines that
the selected input point set 130 is not the last input point set
130, then the method 300 proceeds to step 326. At step 326,
the relevance application 140 selects the next input point set
130. The method 300 then returns to step 310 (path C in
FIGS. 3A-3B), where the relevance application 140 selects
the first input point 132(1) included in the newly selected
input point set 130.

[0085] If, however, at step 324, the relevance application
140 determines that the selected input point set 130 is the
last input point set 130, then the method 300 proceeds
directly to step 328. At step 328, the relevance application
140 transmits and/or displays the Shapley value vector 130
for each input value 132 of each input value set 132 for use
in understanding the trained neural network 120. The
method 300 then terminates.

[0086] For explanatory purposes only, the steps 310-318
in method 300 are described as occurring sequentially for
each input point 132 of each input point set 130. However,
in various embodiments, any number of the steps 310-318
may occur concurrently, sequentially, or any combination
thereof for any number of the input points 132 and any
number of the input point sets 130. Similarly, the steps
312-316 are described as occurring sequentially for the
coalition sizes 156 included in the coalition size list 154.
However, in various embodiments, any number of the steps
312-316 may occur concurrently, sequentially, or any com-
bination thereof for any number of the coalition sizes 156.

[0087] In sum, the disclosed techniques may be used to
efficiently quantify what trained neural networks have
learned. In one embodiment, a relevance application
includes, without limitation, a neural network conversion
engine and a Shapley value engine. The neural network
conversion engine generates a probabilistic representation of
a trained neural network. First, the neural network conver-
sion engine converts the initial point transformation of the
trained neural network to an input converter. The initial
point transformation maps N input points included in an
input point set to M internal points. By contrast, the input
converter maps the input point set, a specified input point
included in the input point set, and a specified coalition size
to a partial input distribution set and a full input distribution
set. The partial input distribution set specifies expected
distributions for the M internal points over the subset of
coalitions of the input point set formed without the specified
input point that have the specified coalition size. The full
input distribution set is the partial input distribution set
adjusted to reflect the contribution of the selected input point
to each of the M internal points. For each subsequent point
transformation that propagates points within the trained
neural network, the neural network conversion engine gen-
erates a corresponding distribution transformation that
propagates distributions within the probabilistic neural net-
work.

Feb. 11, 2021

[0088] Subsequently, the relevance application generates a
coalition size list having K approximately equally spaced
coalition sizes spanning from 1 to (N-1). For each of the
(NxK) combinations of the N input points and the K
coalition sizes, the relevance application generates a partial
input distribution set and a full input distribution set using
the input converter. Subsequently, for each of the (NxK)
partial input distribution sets, the relevance application
generates a corresponding partial output distribution set
using the probabilistic neural network. In addition, for each
of the (NxK) full input distribution sets, the relevance
application generates a corresponding full output distribu-
tion set using the probabilistic neural network. To determine
the Shapley value representing the contribution of the i”
input point to the j* output point, the relevance application
computes the average difference between the K associated
“full” means and the K associated “partial” means. For the
i input point and the i output point, the associated full/
partial means are the i means in each of the full/partial
output distribution sets associated with the i” input point.

[0089] At least one technical advantage of the disclosed
techniques relative to the prior art is that the relevance
application can more efficiently and more reliably quantify
how a trained neural network operates across a wide range
of architectures and input types. In particular, contrary to
prior art approaches that use unreliable and/or non-robust
heuristics, the relevance application uses statistical approxi-
mation to compute estimated Shapley values that more
accurately quantify the contributions of input points to
output points and, optionally, internal points. Further, esti-
mating Shapley values using the disclosed techniques is
computationally more efficient than computing exact Shap-
ley values, as is done in prior art approaches. In that regard,
the number of network evaluations required to compute
exact Shapley values for a set of N input points to a trained

neural network is ¢ (2%), while the number of network
evaluations required to estimate Shapley values for the set of

input points using the relevance application is @ (2xKxN).
Accordingly, the relevance application consumes less time
and computational resources than prior art approaches that
compute exact Shapley values and can be used to more
accurately and effectively evaluate and understand how a
trained neural network operates relative to prior art
approaches. As described previously herein, insights into a
trained neural network provided by the estimated Shapley
values can be used to efficiently re-train the trained neural
network to increase accuracy and reliability. These technical
advantages provide one or more technological advance-
ments over the prior art.

[0090] 1. In some embodiments, a computer-implemented
method for quantifying how a trained neural network oper-
ates comprises generating a plurality of input distributions
based on a first plurality of input points associated with the
trained neural network, wherein each input distribution is
characterized by a mean and a variance associated with a
different neuron included in the trained neural network;
propagating the plurality of input distributions through a
probabilistic neural network that is derived from at least a
portion of the trained neural network to generate one or more
output distributions; and based on a first output distribution
included in the one or more output distributions, computing
a contribution of a first input point included in the first
plurality of input points to a difference between a first output

US 2021/0042613 Al

point associated with a first output of the trained neural
network and an estimated mean prediction associated with
the first output.

[0091] 2. The computer-implemented method of clause 1,
wherein the contribution comprises an estimated Shapley
value.

[0092] 3. The computer-implemented method of clauses 1
or 2; wherein the trained neural network comprises at least
one of a trained convolutional neural network and a trained
multilayer perceptron.

[0093] 4. The computer-implemented method of any of
clauses 1-3, wherein generating the plurality of input dis-
tributions comprises replacing the first input point included
in the first plurality of input points with a baseline value to
generate a second plurality of input points; and for each
neuron included in a hidden layer of the trained neural
network, estimating a distribution of internal points that the
neuron would compute across one or more coalitions of the
second plurality of input points having a first coalition size.
[0094] 5. The computer-implemented method of any of
clauses 1-4, wherein propagating the plurality of input
distributions comprises inputting a plurality of input statis-
tical sets representing the plurality of input distributions to
a composite function that is formed from a plurality of
distribution transformations associated with the probabilistic
neural network.

[0095] 6. The computer-implemented method of any of
clauses 1-5, wherein each distribution transformation
included in the plurality of distribution transformations
comprises a probabilistic version of a different point trans-
formation associated with the at least a portion of the trained
neural network.

[0096] 7. The computer-implemented method of any of
clauses 1-6, wherein the first output distribution is associ-
ated with both a baseline value for a first input of the trained
neural network and a first coalition size that is related to the
first plurality of input points, and computing the contribution
comprises performing a subtraction operation between a first
mean of the first output distribution and a second mean of a
second output distribution to compute a first marginal dis-
tribution; wherein the second output distribution is associ-
ated with both the first input value for the first input and the
first coalition size; and aggregating the first marginal con-
tribution with at least a second marginal contribution asso-
ciated with a second coalition size to compute the contri-
bution, wherein the second coalition size is related to the
first plurality of input points.

[0097] 8. The computer-implemented method of any of
clauses 1-7, wherein computing the contribution comprises
computing a first marginal contribution based on the first
output distribution; and aggregating a plurality of marginal
contributions that includes the first marginal contribution to
compute the contribution, wherein each marginal contribu-
tion is associated with a different coalition size included in
a plurality of coalitions sizes that is related to the first
plurality of input points.

[0098] 9. The computer-implemented method of any of
clauses 1-8, further comprising computing the plurality of
coalition sizes based on the total number of inputs of the
trained neural network.

[0099] 10. The computer-implemented method of any of
clauses 1-9, further comprising, based on a second output
distribution included in the one or more output distributions,
computing a contribution of the first input point to a differ-

Feb. 11, 2021

ence between a second output point associated with a second
output of the trained neural network and an estimated mean
prediction associated with the second output.

[0100] 11. In some embodiments, one or more non-tran-
sitory computer readable media include instructions that,
when executed by one or more processors, cause the one or
more processors to quantify how a trained neural network
operates by performing the steps of generating a plurality of
input statistical sets based on a first plurality of input points
associated with the trained neural network, wherein each
input statistical set characterizes a distribution associated
with a different neuron included in the trained neural net-
work; propagating the plurality of input statistical sets
through a probabilistic neural network that is derived from
at least a portion of the trained neural network to generate
one or more output statistical sets; and based on a first output
statistical set included in the one or more output statistical
sets, computing a contribution of a first input point included
in the first plurality of input points to a difference between
a first output point associated with a first output of the
trained neural network and an estimated mean prediction
associated with the first output.

[0101] 12, The one or more non-transitory computer read-
able media of clause 11, wherein the contribution comprises
an estimated Shapley value.

[0102] 13. The one or more non-transitory computer read-
able media of clauses 11 or 12, wherein the trained neural
network comprises at least one of a trained convolutional
neural network and a trained multilayer perceptron.

[0103] 14. The one or more non-transitory computer read-
able media of any of clauses 11-13, wherein each input
statistical set included in the plurality of input statistical sets
includes a different mean and a different variance, and each
output statistical set included in the one or more output
statistical sets characterizes a distribution associated with a
different output of the trained neural network.

[0104] 15. The one or more non-transitory computer read-
able media of any of clauses 11-14, wherein a plurality of
parameter values is associated with both the probabilistic
neural network and the at least a portion of the trained neural
network.

[0105] 16. The one or more non-transitory computer read-
able media of any of clauses 11-15, wherein generating the
plurality of input statistical sets comprises replacing the first
input point included in the first plurality of input points with
a baseline value to generate a second plurality of input
points; and for each neuron included in a hidden layer of the
trained neural network, determining an input statistical set
that characterizes an estimated distribution of internal points
that the neuron would compute across one or more coalitions
of'the second plurality of input points having a first coalition
size.

[0106] 17. The one or more non-transitory computer read-
able media of any of clauses 11-16, wherein the first output
statistical set is associated with both a baseline value for a
first input of the trained neural network and a first coalition
size that is related to the first plurality of input points, and
computing the contribution comprises performing a subtrac-
tion operation between a first mean included the first output
statistical set and a second mean included a second output
statistical set to compute a first marginal contribution,
wherein the second statistical set is associated with both the
first input value for the first input and the first coalition size;
and aggregating the first marginal contribution with at least

US 2021/0042613 Al

a second marginal contribution associated with a second
coalition size to compute the contribution, wherein the
second coalition size is related to the first plurality of input
points.

[0107] 18. The one or more non-transitory computer read-
able media of any of clauses 11-17, wherein computing the
contribution comprises computing a first marginal contribu-
tion based on the first output statistical set; and aggregating
a plurality of marginal contributions that includes the first
marginal contribution to compute the contribution, wherein
each marginal contribution is associated with a different
coalition size included in a plurality of coalitions sizes that
is related to the first plurality of input points.

[0108] 19. The one or more non-transitory computer read-
able media of any of clauses 11-18, further comprising
generating a probabilistic version of each point transforma-
tion included in a plurality of point transformations repre-
senting the at least a portion of the trained neural network to
generate the probabilistic neural network.

[0109] 20.Insome embodiments, a system for quantifying
how a trained neural network operate comprises one or more
memories storing instructions; and one or more processors
that are coupled to the one or more memories and, when
executing the instructions, are configured to generate a
plurality of input distributions based on a first plurality of
input points associated with the trained neural network,
wherein each input distribution is characterized by a mean
and a variance associated with a different neuron included in
the trained neural network; propagate the plurality of input
distributions through a probabilistic neural network that is
derived from at least a portion of the trained neural network
to generate one or more output distributions; and compute an
estimated Shapley value based on a first output distribution
included in the one or more output distributions, wherein the
estimated Shapley value quantifies a contribution of a first
input point included in the first plurality of input points to a
difference between a first output point associated with a first
output of the trained neural network and an estimated mean
prediction associated with the first output.

[0110] Any and all combinations of any of the claim
elements recited in any of the claims and/or any elements
described in this application, in any fashion, fall within the
contemplated scope of the embodiments and protection.
[0111] The descriptions of the various embodiments have
been presented for purposes of illustration, but are not
intended to be exhaustive or limited to the embodiments
disclosed. Many modifications and variations will be appar-
ent to those of ordinary skill in the art without departing
from the scope and spirit of the described embodiments.
[0112] Aspects of the present embodiments may be
embodied as a system, method or computer program prod-
uct. Accordingly, aspects of the present disclosure may take
the form of an entirely hardware embodiment, an entirely
software embodiment (including firmware, resident soft-
ware, micro-code, etc.) or an embodiment combining soft-
ware and hardware aspects that may all generally be referred
to herein as a “module,” a “system,” or a “computer.” In
addition, any hardware and/or software technique, process,
function, component, engine, module, or system described
in the present disclosure may be implemented as a circuit or
set of circuits. Furthermore, aspects of the present disclosure
may take the form of a computer program product embodied
in one or more computer readable medium(s) having com-
puter readable program code embodied thereon.

Feb. 11, 2021

[0113] Any combination of one or more computer read-
able medium(s) may be utilized. The computer readable
medium may be a computer readable signal medium or a
computer readable storage medium. A computer readable
storage medium may be, for example, but not limited to, an
electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

[0114] Aspects of the present disclosure are described
above with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer
program products according to embodiments of the disclo-
sure. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine. The instructions, when executed via
the processor of the computer or other programmable data
processing apparatus, enable the implementation of the
functions/acts specified in the flowchart and/or block dia-
gram block or blocks. Such processors may be, without
limitation, general purpose processors, special-purpose pro-
cessors, application-specific processors, or field-program-
mable gate arrays.

[0115] The flowchart and block diagrams in the figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods and computer
program products according to various embodiments of the
present disclosure. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out
of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

[0116] While the preceding is directed to embodiments of
the present disclosure, other and further embodiments of the

US 2021/0042613 Al
12

disclosure may be devised without departing from the basic
scope thereof, and the scope thereof is determined by the
claims that follow.

What is claimed is:

1. A computer-implemented method for quantifying how
a trained neural network operates, the method comprising:

generating a plurality of input distributions based on a

first plurality of input points associated with the trained
neural network, wherein each input distribution is
characterized by a mean and a variance associated with
a different neuron included in the trained neural net-
work;

propagating the plurality of input distributions through a

probabilistic neural network that is derived from at
least a portion of the trained neural network to generate
one or more output distributions; and

based on a first output distribution included in the one or

more output distributions, computing a contribution of
a first input point included in the first plurality of input
points to a difference between a first output point
associated with a first output of the trained neural
network and an estimated mean prediction associated
with the first output.

2. The computer-implemented method of claim 1,
wherein the contribution comprises an estimated Shapley
value.

3. The computer-implemented method of claim 1,
wherein the trained neural network comprises at least one of
a trained convolutional neural network and a trained multi-
layer perceptron.

4. The computer-implemented method of claim 1,
wherein generating the plurality of input distributions com-
prises:

replacing the first input point included in the first plurality

of input points with a baseline value to generate a
second plurality of input points; and

for each neuron included in a hidden layer of the trained

neural network, estimating a distribution of internal
points that the neuron would compute across one or
more coalitions of the second plurality of input points
having a first coalition size.

5. The computer-implemented method of claim 1,
wherein propagating the plurality of input distributions
comprises inputting a plurality of input statistical sets rep-
resenting the plurality of input distributions to a composite
function that is formed from a plurality of distribution
transformations associated with the probabilistic neural net-
work.

6. The computer-implemented method of claim 5,
wherein each distribution transformation included in the
plurality of distribution transformations comprises a proba-
bilistic version of a different point transformation associated
with the at least a portion of the trained neural network.

7. The computer-implemented method of claim 1,
wherein the first output distribution is associated with both
a baseline value for a first input of the trained neural network
and a first coalition size that is related to the first plurality of
input points, and computing the contribution comprises:

performing a subtraction operation between a first mean

of the first output distribution and a second mean of a
second output distribution to compute a first marginal
distribution, wherein the second output distribution is
associated with both the first input value for the first
input and the first coalition size; and

Feb. 11, 2021

aggregating the first marginal contribution with at least a
second marginal contribution associated with a second
coalition size to compute the contribution, wherein the
second coalition size is related to the first plurality of
input points.

8. The computer-implemented method of claim 1,

wherein computing the contribution comprises:

computing a first marginal contribution based on the first
output distribution; and

aggregating a plurality of marginal contributions that
includes the first marginal contribution to compute the
contribution, wherein each marginal contribution is
associated with a different coalition size included in a
plurality of coalitions sizes that is related to the first
plurality of input points.

9. The computer-implemented method of claim 8, further
comprising computing the plurality of coalition sizes based
on the total number of inputs of the trained neural network.

10. The computer-implemented method of claim 1, fur-
ther comprising, based on a second output distribution
included in the one or more output distributions, computing
a contribution of the first input point to a difference between
a second output point associated with a second output of the
trained neural network and an estimated mean prediction
associated with the second output.

11. One or more non-transitory computer readable media
including instructions that, when executed by one or more
processors, cause the one or more processors to quantify
how a trained neural network operates by performing the
steps of:

generating a plurality of input statistical sets based on a
first plurality of input points associated with the trained
neural network, wherein each input statistical set char-
acterizes a distribution associated with a different neu-
ron included in the trained neural network;

propagating the plurality of input statistical sets through a
probabilistic neural network that is derived from at
least a portion of the trained neural network to generate
one or more output statistical sets; and

based on a first output statistical set included in the one or
more output statistical sets, computing a contribution of
a first input point included in the first plurality of input
points to a difference between a first output point
associated with a first output of the trained neural
network and an estimated mean prediction associated
with the first output.

12. The one or more non-transitory computer readable
media of claim 11, wherein the contribution comprises an
estimated Shapley value.

13. The one or more non-transitory computer readable
media of claim 11, wherein the trained neural network
comprises at least one of a trained convolutional neural
network and a trained multilayer perceptron.

14. The one or more non-transitory computer readable
media of claim 11, wherein each input statistical set included
in the plurality of input statistical sets includes a different
mean and a different variance, and each output statistical set
included in the one or more output statistical sets charac-
terizes a distribution associated with a different output of the
trained neural network.

15. The one or more non-transitory computer readable
media of claim 11 wherein a plurality of parameter values is
associated with both the probabilistic neural network and the
at least a portion of the trained neural network.

US 2021/0042613 Al

16. The one or more non-transitory computer readable
media of claim 11, wherein generating the plurality of input
statistical sets comprises:

replacing the first input point included in the first plurality

of input points with a baseline value to generate a
second plurality of input points; and

for each neuron included in a hidden layer of the trained

neural network, determining an input statistical set that
characterizes an estimated distribution of internal
points that the neuron would compute across one or
more coalitions of the second plurality of input points
having a first coalition size.

17. The one or more non-transitory computer readable
media of claim 11, wherein the first output statistical set is
associated with both a baseline value for a first input of the
trained neural network and a first coalition size that is related
to the first plurality of input points, and computing the
contribution comprises:

performing a subtraction operation between a first mean

included the first output statistical set and a second
mean included a second output statistical set to com-
pute a first marginal contribution, wherein the second
statistical set is associated with both the first input
value for the first input and the first coalition size; and

aggregating the first marginal contribution with at least a

second marginal contribution associated with a second
coalition size to compute the contribution, wherein the
second coalition size is related to the first plurality of
input points.

18. The one or more non-transitory computer readable
media of claim 11, wherein computing the contribution
comprises:

computing a first marginal contribution based on the first

output statistical set; and

aggregating a plurality of marginal contributions that

includes the first marginal contribution to compute the

Feb. 11, 2021

contribution, wherein each marginal contribution is
associated with a different coalition size included in a
plurality of coalitions sizes that is related to the first
plurality of input points.

19. The one or more non-transitory computer readable
media of claim 11, further comprising generating a proba-
bilistic version of each point transformation included in a
plurality of point transformations representing the at least a
portion of the trained neural network to generate the proba-
bilistic neural network.

20. A system for quantifying how a trained neural network
operates, the system comprising:

one or more memories storing instructions; and

one or more processors that are coupled to the one or more

memories and, when executing the instructions, are

configured to:

generate a plurality of input distributions based on a
first plurality of input points associated with the
trained neural network, wherein each input distribu-
tion is characterized by a mean and a variance
associated with a different neuron included in the
trained neural network;

propagate the plurality of input distributions through a
probabilistic neural network that is derived from at
least a portion of the trained neural network to
generate one or more output distributions; and

compute an estimated Shapley value based on a first
output distribution included in the one or more
output distributions, wherein the estimated Shapley
value quantifies a contribution of a first input point
included in the first plurality of input points to a
difference between a first output point associated
with a first output of the trained neural network and
an estimated mean prediction associated with the
first output.

